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In this paper, we use the cell dynamics method to study the dynamics of phase transformation when three
phases exist. The system we study is a two-dimensional system. The system is able to achieve three phases
coexistence, which for simplicity we call crystal, liquid and vapor phases. We focus our study on the case when
the vapor and crystal phases are stable and can coexist while the other intermediate liquid phase is metastable.
In this study we examine the most fundamental process of the growth of a composite nucleus which consists
of a circular core of one phase surrounded by a circular layer of second phase embedded in a third phase. We
found that there is one special configuration that consists of a core stable phase surrounded by another stable
phase in a metastable liquid environment which becomes stationary and stable. Then, the nucleus does not
grow and the metastable liquid survives. The macroscopic liquid phase does not disappear even though it is
thermodynamically metastable. This result seems compatible to the argument of kinetics of phase transition
developed by Cahn �J. Am. Ceram. Soc. 52, 118 �1969�� based on the construction of a common tangent of the
free energy curve.

DOI: 10.1103/PhysRevE.71.061604 PACS number�s�: 64.60.Qb, 68.55.Ac, 64.75.�g

I. INTRODUCTION

The study of the formation of the long-lived metastable
phase during phase transformation has a long history �1,2�.
Recently, renewed interest in the metastable phase formation,
in particular, in the field of soft-condensed matter physics
�3,4� has emerged because of the rather long relaxation time
of these materials, which, typically, are in the ranges 1 ms to
1 yr �5�. Although the formation of the thermodynamically
metastable phase is not only academically but industrially
important because many industrial products are in long-lived
metastable state, the theoretical study of the kinetics of phase
transformation is hindered because of the lack of appropriate
theoretical and computational models. Hence, a detailed un-
derstanding of the kinetics of phase transformation using re-
alistic modeling is essential.

The direct microscopic computer simulation of the nucle-
ation and the kinetics of phase transformation using molecu-
lar dynamics or the Monte Carlo method is possible �6� but is
still a difficult task. Even the most fundamental phenomenon
like nucleation is still not easy. In order to avoid the demand
for huge computational resources, and to get the qualitative
�course-grained� picture of the kinetics of phase transforma-
tion, the mesoscopic approach based on the phenomenologi-
cal model called the Cahn-Hilliard �7�, Ginzburg-Landau �8�,
or phase-field model �9,10�, which requires a solution using a
nonlinear partial differential equation, has been traditionally
employed. Since this approach requires the time integration
of highly nonlinear partial differential equations, it is still not
easy to simulate the long-time behavior of the kinetics of
phase transformation �11� except for the various forms of
special analytical traveling wave solutions �12–15�.

In order to understand the full kinetics of phase transfor-
mation with the transient and long-lived metastable phase, an
efficient simulation method is absolutely necessary. In this
report, we use a formalism which is based on the cell dy-
namics method to investigate the kinetics of the metastable
phase during the phase transformation when the circular

grain �nucleus� of the stable phase grows. Our result suggests
that the metastable phase can be long-lived indeed, and it
also indicates that the cell dynamics method is efficient and
flexible enough to study the kinetics of the metastable phase
during the phase transformation.

II. CELL DYNAMICS METHOD FOR THREE-PHASE
SYSTEM

In order to study the phase transformation, it is customary
to study the partial differential equation called the time-
dependent Ginzburg-Landau �TDGL� equation

��

�t
= −

�F
��

, �1�

where � is the nonconserved order parameter and F is the
free energy functional �grand potential�, which is usually
written as the square-gradient form

F��� =� dr�1

2
D����2 + h���� . �2�

The local part of the free energy h��� determines the bulk
phase diagram and the value of the order parameters in equi-
librium phases. Traditionally, the double-well form

h��� = − 1
2�2 + 1

4�4 �3�

has been used to model the phase transformation of a two
phase system.

Puri and Oono �16� transformed this TDGL equation �1�
for the nonconserved order parameter into the space-time
discretized cell-dynamics equation following a similar trans-
formation of the kinetic equation for the conserved order
parameter called the Cahn-Hilliard-Cook equation �17�.
Their transformation does not correspond to the numerical
approximation of the original TDGL equation. Rather, they
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aimed at simulating the kinetics of phase transformation of
real system within the framework of discrete cellular au-
tomata.

According to their cell dynamics method, the partial dif-
ferential equation �1� is transformed into the finite difference
equation in space and time

��t + 1,n� = F���t,n�� , �4�

where the time t is discrete integer and the space is also
discrete and is expressed by the site index �integer� n. The
mapping F is given by

F���t,n�� = − f„��t,n�… + �����t,n�		 − ��t,n�� �5�

where f���=dh��� /d� and the definition of ��¯		 for the
two-dimensional square grid is given by

����t,n�		 = 1
6 


i=NN
��t,i� + 1

12 

i=NNN

��t,i� , �6�

where “NN” means the nearest neighbors and “NNN” the
next-nearest neighbors of the square grid. Improved forms of
this mapping function F for three-dimensional case was also
obtained �16–18�.

Oono and Puri �16,17� have further approximated the de-
rivative of the local free energy f��� called a “map function”
by the tanh form

f��� =
dh

d�
� � − A tanh � �7�

with A=1.3, which corresponds to the free energy �19�

h��� = − A ln�cosh �� + 1
2�2 �8�

and is the approximation to Eq. �3� if A=1.5 �18,19�. Later
Chakrabarti and Brown �19� argued that this simplification is
justifiable since the detailed form �3� of the free energy h���
is irrelevant to the long-time kinetics and the scaling expo-
nent.

Subsequently, however, several authors used the map
function f��� directly obtained from the free energy h��� in
cell dynamics equation �5� as it is �20,21� and found that the
cell dynamics equation is still amenable for a realistic map
function numerically. Ren and Hamley �21� argued that by
using the original form of the free energy function f��� one
can easily include the effect of asymmetry of free energy
and, hence, the asymmetric character of two phases can be
considered. It is now well recognized that this cell dynamics
method can reproduce the essential feature of the kinetics of
phase transformation between two phases even though the
method is not guaranteed �18� to be an accurate approxima-
tion of the original TDGL partial differential equation �1�.

A further extension of the cell dynamics equation to the
three phase system is simple. One has to introduce the free
energy function h��� of triple-well form, which can achieve
a three-phase coexistence. In our report, we will use one of
the simplest analytical forms proposed by Widom �22�:

h��� = 1
4 �� + 1�2�� − 1�2��2 + �� , �9�

where the parameter � controls the relative stability of three
phases. Several shapes of the free energy function h��� for

several values of the parameter � are shown in Fig. 1. As can
be seen from the figure, two phases around �v=−1 which we
call vapor and �c=1 which we call crystal for simplicity
always coexist, while another phase around �l=0 which we
call liquid can be metastable when 0���0.5. The free en-
ergy of this metastable liquid phase is higher than that of the
stable crystal or vapor phases by the amount

�h = f�� = 1� − f�� = 0� =
�

4
. �10�

This liquid phase becomes completely unstable and dis-
appears when ���c where �c=0.5 is the critical point. When
��0, only the liquid phase is stable and both the vapor and
the crystal phases are metastable instead. Since we are inter-
ested in the case when only one intermediate phase is meta-
stable, we will consider the case when 0����c. As will be
shown in the next section, even though the metastable liquid
minimum is irrelevant for the equilibrium phase behavior, it
not only controls the phase transition kinetics but appears as
the long-lived macroscopic metastable phase during the
phase transformation.

Similar triple-well potentials were used by several work-
ers to study the nucleation �23� and the metastable phase
formation �4,14,24� within the framework of the original
TDGL or the phase-field model. The importance of this
triple-well free energy and the appearance of the metastable
state were also recently suggested experimentally in a
colloid-polymer mixture �3,5�.

FIG. 1. The model triple-well free energy �22� which can
achieve a three-phase coexistence. The left phase with �v=−1 is
called vapor, the central phase with �l=0 is called liquid and the
right phase with �c=1 is called crystal for convenience. The triple
point is at �t=0, when all three phases are at equilibrium and can
coexist. The liquid phase becomes metastable when �t����m,
where �m=0.2044 though the local vapor-liquid or liquid-crystal
equilibrium could be realized because the common tangent between
the stable vapor and the metastable liquid phases or those between
stable crystal and metastable liquid phases can be drawn �broken
lines�. When the parameter � exceeds �m=0.2044, no common tan-
gent can be drawn, so the two-phase equilibrium between vapor-
liquid and liquid-crystal cannot be achieved. When � is larger than
�c=0.5, the liquid phase becomes completely unstable.
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III. NUMERICAL RESULTS AND DISCUSSIONS

A. Front velocity of the growing stable phase

Before looking at the issue of the kinetics of phase trans-
formation of a metastable phase in a three-phase system, we
will briefly look at the growth of one circular nucleus from
the stable phase after nucleation in a two-phase system. In
order to simulate the evolution of a nucleus, we have to
prepare the system as a two-phase system in which one phase
is stable and another is metastable and has higher free energy
than the former. The free energy difference between the
stable and metastable phases is controlled by the super satu-
ration in usual liquid condensation from vapor and by the
under cooling in usual crystal nucleation. Microscopically,
this free energy difference is necessary for the nucleus of the
stable phase to grow by overcoming the curvature effect of
the surface tension �25�.

In order to study the growth of a stable phase using a cell
dynamics system, we will consider the time-dependent
Ginzburg-Landau �TDGL� equation �1� of square gradient
form �2�. The local part of the free energy h���, which we
use is �26,27�

h��� = 1
4q�2�1 − ��2 + 3

2���3

3
−

�2

2
 + 1

4� . �11�

This free energy is shown in Fig. 2 where the liquid phase
with �l=0 is metastable while the crystal phase with �c=1 is
stable, which mimics the liquid-crystal part of the triple-well
potential �9�. The free energy barrier between two phases can
be tuned by q, while the free energy difference �h between
the stable phase at �c=1 and the metastable phase at �l=0
can be controlled by �. This free energy difference is given
by the same formula �10� as in the model three-phase system.
We choose the parameter q=2 in order to mimic the func-
tional form of the triple well free energy in Fig. 1 as shown
in Fig. 2.

The time-dependent Ginzburg-Landau �TDGL� equations
�1� and �2� for a circular or a spherical growing nucleus of

stable phase in a metastable environment with radial coordi-
nate r is written as �12�

D� �2

�r2 +
d − 1

r

�

�r
� −

��

�t
=

�h

��
, �12�

where d is the dimension �d=2 for a circular and d=3 for a
spherical nucleus� of the problem. Then, the traveling wave
solution having radial symmetry with moving interface at
R�t� of the form

��r,t� = ��X� , �13�

with X=r−R�t� satisfies the differential equation

D
d2�

dX2 + v
d�

dX
−

�h

��
= 0 �14�

with

v =
dR

dt
+

D�d − 1�
R

. �15�

Equation �14� represents a mechanical analog of the equation
of motion of classical particle in a potential well −h subject
to a friction force which is proportional to the parameter v.
Therefore, a finite size of the free energy difference �h is
necessary for Eq. �14� to compensate for the dissipation of
energy due to friction and to have a solution which corre-
sponds to a traveling wave. In other words, the moving
�growing or shrinking� interface is possible only when there
is the free energy difference �h between two phases. There-
fore, one phase should be metastable and another should be
stable.

Equation �14� has a particular solution only when the pa-
rameter v takes a specific value. The corresponding interfa-
cial velocity dR /dt is given by

dR

dt
= v −

D�d − 1�
R

, �16�

where the second term on the right-hand side represents the
effect of capillary pressure. For a larger nucleus with R
→	, the interfacial velocity becomes v which is also the
formula for the one-dimension problem with d=1. For a
smaller nucleus, the actual interfacial velocity dR /dt will be
smaller than v due to the capillary pressure because R�0. In
particular, when dR /dt�0, the nucleus cannot grow. The
nucleus with a radius R larger than the critical radius Rc
grows while the one with a smaller radius disappears. The
critical radius Rc is determined from dR /dt=0 which gives

Rc =
D�d − 1�

v
. �17�

Therefore, in two-phase coexistence with v=0, any circular
or spherical nucleus with finite radius R disappears, and only
a flat interface remains.

The shrinking metastable void within a stable phase is
also described by Eqs. �12�–�17�, but now, with v�0 and
dR /dt�0. Then, the capillary pressure in Eq. �16� always
accelerates the interfacial velocity, and there is no critical
radius Rc for the void.

FIG. 2. The model double-well free energy �26,27� �solid curve�
which achieves the two-phase equilibrium is compared with the
triple-well free energy in Fig. 1 �broken curve�. The parameter �
determines the free energy difference �h, and the parameter q de-
termines the free energy barrier. We choose q=2 to mimic the
triple-well potential.
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The above steady-state solution of TDGL with a constant
interfacial velocity v was obtained analytically in one dimen-
sion by Chan �12� when the free energy is written using the
quartic form �11�. Using his formula, the interfacial velocity
v of our TDGL model �1� and �2� with the free energy �11� is
given by

v =� D

2q
3� . �18�

Chan �12� further suggested that if the interfacial width is
narrow, the interfacial velocity of a circular or spherical
growing nucleus is asymptotically given by the same for-
mula �18�. The larger the free energy difference �, and the
lower the free energy barrier q, the higher the front velocity
v from Eq. �18�.

The critical radius Rc of a circular nucleus in a two-
dimensional system is also given analytically �12,26� by

Rc =
D

v
=

�2qD

3�
. �19�

In the metastable environment, a nucleus of a stable phase
with a radius R smaller than Rc shrinks, while the nucleus
with a radius larger than Rc grows and its front velocity
approaches Eq. �18�. The void of a metastable phase sur-
rounded by a stable environment always shrinks regardless
of the size of the critical radius. Again, the larger the free
energy difference �, and the lower the free energy barrier q,
the smaller the critical radius Rc.

We have imported the above free energy �11� into the cell
dynamics code written by MATHEMATICA TM �28� for the
animation of spinodal decomposition developed by Gaylord
and Nishidate �29�, and simulated the growth of the stable
crystal phase in a metastable liquid environment and that of
a metastable liquid void in a stable crystal environment.

Figures 3 and 4 show the evolution of the stable circular
crystal phase in a metastable liquid environment, and the
contraction of a metastable liquid void in a stable crystal
environment. The system size is 100
100=10 000 and D
=0.5 �16,29�. The periodic boundary condition is used. The
initial nucleus or void is prepared by randomly selecting the
order parameter � from 0.9���1.1 for stable crystal and
from −0.1���0.1 for metastable liquid. The initial random
distribution is necessary because our cell-dynamics system is
deterministic and does not include random noise. Figures 3
and 4 show that the stable circular crystal grows and the
metastable circular liquid shrinks steadily without changing
the circular shape appreciably.

In Fig. 5 the effective radius r of the circular nucleus of a
stable crystal grain and a metastable liquid void, which is
calculated by assuming the circular area S from

r =� S

�
�20�

is plotted as the function of the time step. We defined the
area S of crystal as the number of pixels whose order param-
eter � is larger then 0.5. Figure 5 clearly indicates a nearly
linear growth of the radius r of the stable phase which means
the constant front velocity of the liquid-crystal interface.

The velocities v estimated from Fig. 5 are summarized in
Table I. Table I shows that the analytical expression in Eq.
�18� gives a rough estimate of the front velocity. The velocity
of shrinking void is always larger than the growing nucleus
due to the capillary pressure as expected. Understanding that
the cell dynamics method does not attempt to solve the origi-
nal TDGL directly and, hence, is not guaranteed to reproduce
the analytical expression �18�, the discrepancy between the
cell dynamics simulation and theoretical prediction in Eq.
�18� seems not so serious. There is also a problem of the
definition of the area S of the growing phase, which will also
numerically affect the front velocity calculated from Eq.
�20�.

FIG. 3. The evolution of the crystal nucleus �white� in the meta-
stable liquid environment �gray� when q=2 and �=0.1.

FIG. 4. The contraction of the metastable liquid void �gray� in
the stable crystal environment �white� when q=2 and �=0.1.
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From the comparison of the cell dynamics simulation and
the theoretical prediction from the TDGL for the two-phase
system, we have confidence that this cell dynamics method
should be effective to study the qualitative features of the
evolution of the metastable phase in a three-phase system,
which we will discuss in the next subsection of this paper.
More details about the application of the cell dynamics
method to the phase transformation in a two-phase system
and the simulation of the so-called Kolmogorov-Johnson-
Mehl-Avram �KJMA� kinetic will be presented elsewhere
�27�.

B. Long-lived metastable phase in a three-phase system

Since we are most interested in the evolution or regres-
sion of the metastable phase during the phase transformation
after nucleation, we will study the kinetics of phase transfor-
mation when three phases exist using the model free energy
defined by Eq. �9� and depicted in Fig. 1.

The phase diagram of this system which we will study is
shown in Fig. 6. The equilibrium stable vapor phase has an
order parameter �v=−1 and the stable crystal phase has �c
=1, then the vapor-crystal coexistence lines �binodal� are the
vertical lines at �v=−1 and �c=1. However, the stable liquid
at �l=0 exists only at the triple point �t=0.

Once the stable liquid phase disappears from the equilib-
rium phase diagram when ��0, it can be considered to be

hidden or buried as a metastable liquid phase within the
vapor-crystal binodal. Even this metastable liquid cannot ex-
ist if ���c where �c=0.5. The hidden critical point is at �c
=0.5 and �=0, where the metastable liquid becomes com-
pletely unstable.

There are also hidden vapor-liquid and a liquid-crystal
local coexistence lines �binodals�, which are given by the
cotangency points ��v and ��l of the common tangent be-
tween the vapor and liquid free energy and by ��l and ��c
between the liquid and crystals energy, respectively. These
hidden binodals disappear at �=�m with �m=0.2044 where
the solutions of the simultaneous equations, for example,

h����l� = h����c� ,

h���l� − h����l���l = h���c� − h����c���c �21�

ceases to exist, and the hidden binodal lines are terminated
by the spinodal lines as shown in Fig. 6. Then, the vapor-
liquid and the liquid-crystal coexistence could be established
locally even when the liquid phase is metastable so long as
���m.

For the free energy �8�, the spinodal lines are defined by
the condition

d2h

d�2 = 0 �22�

which gives the outer spinodal lines �sp1

FIG. 5. The evolution and contraction of the effective radii of
the crystal nuclei and liquid voids calculated from Eq. �20� plotted
as a function of time steps. �: crystal nucleus when �=0.1, �:
crystal nucleus when �=0.3, �: liquid void when �=0.1, �: liquid
void when �=0.3. q is set to q=2 for all four cases. The total area
is 100
100=10 000 pixels. The straight lines are the least-square
fittings to the numerical data.

TABLE I. The front velocities of the growing new stable phase
�nucleus� and shrinking unstable phase �void� obtained from the cell
dynamics simulation of Fig. 5 compared with the theoretical pre-
diction from Eq. �18�. The critical radii calculated from Eq. �19� are
also shown for reference.

�
Rc

�theoretical�
v

�theoretical�
vcrystal-liquid

�growing�
vcrystal-liquid

�shrinking�

0.1 4.71 0.106 0.023 0.045

0.3 1.57 0.318 0.133 0.146

FIG. 6. The phase diagram for the model triple-well free energy
defined by Eq. �9�. The model realizes the stable vapor and crystal
phase at �v=−1 �solid vertical line� and �c=1 �solid vertical line�,
respectively, and the metastable liquid phase at �l=0 �solid vertical
line� if 0����c with �c=0.5. The triple point is at �t=0 when
three phases ��� are all stable and can coexist. The metastable
liquid ceases to exist at �=0 and �c=0.5 which is the hidden critical
point ���. There are not only the vapor-crystal binodal �two vertical
solid lines� but the hidden vapor-�metastable� liquid binodal �single-
dot chain curve� and hidden �metastable�liquid-crystal binodal
�double-dots chain curve�, which can be constructed from the com-
mon tangent as shown in Fig. 1. These two pars of binodal disap-
pear ��� when they terminate the spinodal lines �dotted curves� at
�m=0.2044. The spinodal regions are also complex because of the
existence of the metastable liquid phase.

CELL DYNAMICS APPROACH TO THE FORMATION OF … PHYSICAL REVIEW E 71, 061604 �2005�

061604-5



�sp1 = ±�2

5
−

�

5
+

�7 − 2� + 3�2

5�3
�23�

and inner spinodal lines �sp2

�sp2 = ±�2

5
−

�

5
−

�7 − 2� + 3�2

5�3
. �24�

The latter merge at �l=0 and �c=0.5. Therefore, the spinodal
region consists of two regions sandwiched by an outer spin-
odal and an inner spinodal lines when���c while it consists
of one region for ���c as shown in Fig. 6.

We have incorporated the above free energy �9� into the
cell-dynamics code �29� written by MATHEMATICA TM �28�.
We have considered the growth of several special forms of
circular nucleus which consist of two layers of two different
phases embedded in another phase to see the possibility of
the appearance of the long-lived metastable phase.

In Fig. 7 we start from the special structure where the
stable vapor phase is wrapped by the metastable liquid layer,
which is further embedded in a stable crystal. The initial
crystal, liquid and vapor phases are prepared by randomly
selecting the order parameter � from 0.9 to 1.1 for crystal,
from −0.3 to 0.3 for liquid and from −1.1 to −0.9 for vapor
phases. From the analogy of the expansion of a stable
nucleus and the shrinking of metastable inner void in a two-
phase system, it is expected that the outermost crystal phase

expands inward and the inner vapor core expands outward by
consuming the intermediate metastable liquid layer. Actually,
the crystal-liquid interface move inward as expected while
the liquid-vapor interface does not move significantly. The
vapor core does not move significantly even if the radius is
larger than the critical radius as the surrounding metastable
liquid layer has finite thickness, while the crystal-liquid front
shrinks because no critical radius exists. As has been dis-
cussed in Eq. �16�, the capillary pressure accelerates the
shrinking crystal-liquid interface, while it decelerates the
growing liquid-vapor interface. Then, the slow liquid-vapor
interface does not have enough time to move because meta-
stable liquid is consumed by the fast crystal-liquid interface.
Finally, the metastable liquid layer disappears completely
and the stable vapor core is surrounded by the stable crystal
phase and the vapor-crystal coexistence is established.

Figure 8 shows the time evolution of the effective radii of
the crystal-liquid and the liquid-vapor interface estimated
from the area of the nucleus from Eq. �20�. We defined the
area S of three phases as the number of pixels which belong
to them; the pixel of vapor is defined by the order parameter
��−0.5, that of crystal by ��0.5 and that of liquid by
−0.5���0.5. Figure 8 clearly indicates that the effective
radius of the crystal-liquid interface decreases with constant
velocity v while that of the liquid-vapor interface remains
almost constant. The crystal-liquid interfacial velocity esti-
mated by fitting the straight line to the simulation result is
v=0.026 which is again the same order of magnitude as the
interfacial velocity in a two-phase system listed in Table I.

When the metastable liquid core is surrounded by the
stable crystal and vapor phases, the crystal-liquid interface
shrinks and the metastable liquid void disappears as shown
in Fig. 9. The vapor-crystal interface does not move appre-
ciably because the vapor and the crystal phases are in equi-
librium and can coexist. Since our cellular dynamics model
uses continuous order parameter �, the order parameter
changes continuously in space. Then, there is always a thin
layer of liquid with �l=0 between the crystal core with �c
=1 and the vapor environment with �v=0 in Fig. 9.

Figure 10 shows that the effective radius of the vapor-
crystal interface remains constant while that of the crystal-

FIG. 7. A gray-level view of the dynamics of a three-layer
nucleus when �=0.1. The black area is the vapor phase, the gray
area is the metastable liquid phase, and the white area is the crystal
phase. �a� Initial state is the stable vapor nucleus �black� wrapped
by the metastable liquid layer �gray� which is further embedded in
the stable crystal phase �white�. �b�, �c� The outer crystal-liquid
interface shrinks inward by consuming the metastable liquid layer
while the inner liquid-vapor interface does not expand significantly.
�c� Finally the stable vapor phase is surrounded by the stable crystal
phase and the vapor-crystal coexistence is established.

FIG. 8. The time evolution of the effective radius of a circular
crystal-liquid ��� and liquid-vapor ��� interface when �=0.1. The
total area is 100
100=10 000. The radius of the crystal-liquid in-
terface decreases while that of the liquid-vapor interface remains
almost constant.
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liquid interface decreases almost linearly. The crystal-liquid
interfacial velocity is estimated to be v=0.023 which is again
comparable to the values shown in Table I for the two-phase
system.

These two examples have clearly indicated that the behav-
ior of the stable core and the metastable void in a triple-
phase system is similar to those in a two-phase system.

When the composition of the circular nucleus changes, a
very interesting behavior is observed. In Fig. 11, we start
from the special structure where the stable circular crystal
core is wrapped by a stable vapor layer, which is further
embedded in a metastable liquid environment. The initial

crystal, liquid and vapor phases are prepared by randomly
selecting the order parameter � from 0.9 to 1.1 for crystal,
from −0.3 to 0.3 for liquid and from −1.1 to −0.9 for vapor
phases, respectively, as before. Intuitively, we expect that the
stable inner crystal core may not grow because of the crystal-
liquid coexistence while the stable outer vapor layer expands
outward by consuming the metastable liquid environment.
However, we observe that this threefold structure is rather
stable for a very long time. The crystal phase as well as the
vapor phase cannot grow and the metastable liquid phase
survives and occupies almost the same region for a long time
as if the vapor-liquid coexistence is locally established at the
liquid-vapor interface.

Figure 12 shows the time evolution of the effective radius
of the vapor-crystal and liquid-vapor interface estimated
from the area of the nucleus calculated from Eq. �20�. We
confirm the stable vapor-crystal as well as the stable liquid-
vapor interfaces which do not move appreciably. In order to
confirm the numerical accuracy of Fig. 11, we check the
evolution of a dual system where crystal and vapor is ex-
changed. Figure 13 clearly indicates that the dual system
shows exactly the same behavior as in Fig. 11.

These striking results may be interpreted from the shape
of the free energy in Fig. 1 using the argument of Cahn �2�.
Since the parameter �=0.1, the system remains in the region
of phase diagram �Fig. 6� where a hidden liquid-vapor bin-
odal exists and we can draw a common tangent between the
vapor and liquid phases. This means that it is possible to
establish local liquid-vapor coexistence by changing the lo-
cal pressure or the chemical potential even though the liquid

FIG. 9. The same as Fig. 7 when �=0.1 but for the different
ordering of the layers. �a� Initial state is the metastable liquid void
�gray� wrapped by the stable crystal �white� layer which is further
embedded in a stable vapor �black�. �b�, �c� The metastable liquid
void shrinks while the outer stable crystal-vapor interface remains
the same. �c� Finally the stable crystal phase is surrounded by the
stable vapor phase and the vapor-crystal coexistence is established.
There is always a thin layer of liquid at the solid-vapor interface
because we use continuous order parameter �.

FIG. 10. The time evolution of the effective radius of circular
vapor-crystal ��� and crystal-liquid ��� interface when �=0.1. The
radius of outer crystal-vapor interface remains the same while that
of the crystal-liquid interface decreases.

FIG. 11. The gray-level view of the dynamics of a three-layer
nucleus when �=0.1. �a� Initial state is the stable crystal core
�white� wrapped by the stable vapor �black� layer which is further
embedded in the metastable liquid �gray�. �b�, �c�, �d� The initial
structure does not change appreciably even after very long time
steps t=1000, 2000, 3000. Note the difference of time scale from
Figs. 7 and 9. Again, there is always a thin layer of liquid at the
solid-vapor interface as in Fig. 9.
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phase is metastable �Fig. 1 �. Then, the liquid-vapor interface
cannot move. The faceted structure of the liquid-vapor inter-
face appears probably due to the high symmetry of the prob-
lem since we put the nucleus at the center of the area and the
nearest and the next-nearest neighbors are used to calculate
the Laplacian. The flat interface is also favorable to mitigate
the capillary pressure which acts to expand the liquid-vapor
interface. A similar faceted structure appears also in the
stable liquid-vapor interface in Fig. 7.

Furthermore, since this stable vapor layer is so tightly
attracted by an inner crystal core to maintain vapor-crystal
coexistence, the vapor-crystal interface also cannot move.

Therefore this special three-layer structure which Renth et al.
�5� called the “boiled-egg crystal” becomes rather stable. The
existence of this stable crystal wrapped by stable vapor layer
in metastable liquid is predicted theoretically from the shape
of the free energy �2,4,5� and suggested experimentally in a
colloid-polymer mixture �3,30�.

We note in passing, that this boiled-egg crystal is in sharp
contrast to the transient metastable phase predicted from the
steady state solution of the Ginzburg-Landau equation. This
transient phase appears when it is sandwiched by the two
stable phase due to the difference of the front speed of two
interfaces of the stable and metastable phase �4,13,14�, while
our long-lived metastable phase appears when it surrounds
the two stable phases.

As the parameter � increases further above �m=0.2044,
the hidden liquid-vapor coexistence cannot be established
�Fig. 1�, because we cannot construct a common tangent.
Then this boiled-egg crystal structure cannot remain stable as
shown in Fig. 14. The vapor phase starts to grow by consum-
ing the metastable liquid phase, while core crystal phase re-
mains almost the same size and the shape. Finally the meta-
stable liquid phase disappears and the stable crystal phase is
wrapped by the stable vapor phases and the vapor-crystal
coexistence is established. Here again, the initial crystal, liq-
uid, and vapor phases are prepared by randomly selecting the
order parameter � from 0.9 to 1.1 for crystal, from −0.3 to
0.3 for liquid, and from −1.1 to −0.9 for vapor phases.

Figure 15 clearly indicates that the effective radius of the
liquid-vapor interface increases while that of the vapor-
crystal interface remains the same as the function of time.
The liquid-vapor interfacial velocity estimated by fitting the

FIG. 12. The time evolution of the effective radii of a circular
vapor-crystal ��� and liquid-vapor ��� interface when �=0.1. The
total area is 100
100=10 000. The two radii which remain almost
constant indicating that the growth of stable core is prohibited and
the long-lived liquid phase survives even though it is thermody-
namically metastable. Note the long time scale compared with Figs.
8 and 10.

FIG. 13. The same as Fig. 11, but now the stable vapor core
�black� is wrapped by the stable crystal �white� layer which is fur-
ther embedded in the metastable liquid �gray�. We observe exactly
the same morphology as in Fig. 11 if we exchange black �vapor�
and white �crystal�.

FIG. 14. The same as Fig. 11 when �=0.3. �a� Initial state is the
stable crystal core �white� wrapped by the stable vapor layer �black�
which is further embedded in the metastable liquid. �b�, �c� The
stable vapor layer grows by consuming the metastable liquid envi-
ronment, while the stable crystal core remains the same. �c� Finally
the stable crystal phase is surrounded by the stable vapor phase and
the vapor-crystal coexistence is established.
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straight line to the simulation data is v=0.112 which is the
same order of magnitude listed in Table I for the two-phase
system.

Similarly, this long-lived boiled-egg structure will be de-
stroyed by the thermal noise, which can be simulated by
using the cell dynamics equation �16�

��t + 1,n� = F���t,n�� + B�t,n� �25�

instead of Eq. �4�, where B is the amplitude of the noise and
�t ,n� is a uniform random number between −1.0 and 1.0.

In Fig. 16, we start from the same special structure as in
Fig. 11 when �=0.1 but the thermal noise with B=0.07 is
included. The thermal noise certainly destroys the long-lived
metastable configuration as expected, but it still remains

rather stable for a long time. The thermal noise also destroys
the circular or even the faceted structure and the liquid-vapor
interface becomes flat. The thermal noise acts to eliminate
the curvature of the interface to suppress the capillary pres-
sure.

Naturally, the larger the thermal noise, the shorter the life-
time of the metastable configuration as shown in Fig. 17. A
similar effect of noise on the time-scale of the evolution was
observed in the TDGL model of nucleation �8� for a noncon-
served order parameter.

These last four examples indicate that the kinetics of
phase transformation is definitely affected by the presence of
metastable phase and the hidden binodals which is in no way
related to the equilibrium phase diagrams. The long-lived
metastable phase could appear macroscopically if it accom-
modates the special composite nucleus which consists of a
stable crystal core surrounded by an equally stable vapor
layer.

IV. CONCLUSION

In this paper, we have used the cell-dynamics method to
study the evolution of a single composite nucleus. We have
studied the three-phase system which has a hidden binodal
with two stable and one metastable phases. We have called
two stable phases, crystal, and vapor, and one metastable
phase liquid. We could successfully simulate the evolution of
stable phases and the regression of metastable phase. We
have found, however, one special configuration of a stable
crystal core wrapped by a stable vapor layer embedded in the
metastable liquid environment becomes stable and stationary
for long time. This means that the long-lived metastable en-
vironment phase can persist and can appear as a macroscopic
phase even though it is thermodynamically metastable. Ac-
cording to the argument of Cahn �2�, this result can be inter-
preted from the hidden liquid-vapor binodal which can be
constructed from the common tangent between the stable
vapor and metastable liquid phases.

In conclusion, we have used a cell dynamics method to
study the growth of a single nucleus which has traditionally
been explained using the partial differential equation derived

FIG. 15. The time evolution of the effective radii of the circular
vapor-crystal ��� and liquid-vapor ��� interfaces. The total area is
100
100=10 000. The radius of liquid-vapor interface increases
linearly while that of the vapor-crystal interface remains almost
constant as the function of time.

FIG. 16. The same as Fig. 11 but the thermal noise with B
=0.07 is included. The long-lived metastable state is destroyed by
the thermal noise, however the structure is still rather stable for a
long time.

FIG. 17. The same as Fig. 12 for various noise lever B=0.00
�Fig. 12�, B=0.07, and B=0.1 when �=0.1. The effective radius of
the liquid-vapor interface starts to increases and that of the vapor-
crystal interface starts to decrease as we increase the noise level B.
However, the time scale is still much longer than Fig. 15.
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from time-dependent-Ginzburg-Landau equation �8� or the
so-called phase field model �9,10�. We have found that the
long-lived metastable phase can appear during the phase
transformation as predicted by several researchers �1–3,5�.
This cell-dynamics method is not only flexible but numeri-
cally stable to handle such a complex situation when many
phases can coexist. Further extension and modification of the
method to explain the formation of various intermediate

phases will be possible.
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